
Submitted Journal Amercian Statistical Association, November 2003

Specifying and Implementing Nonparametric and Semiparametric Survival
Estimators in Two-Stage (sampled) Cohort Studies with Missing Case Data

Steven D. Mark and Hormuzd A. Katki

Steven D. Mark is a Senior Research Investigator, and Hormuzd A. Katki is a Staff Scientist, in the
Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120
Executive Blvd., EPS Room 8036, Bethesda, MD, 20852-7368. : smark@exchange.nih.gov.e-mail
The authors thank Jamie Robins for many helpful discussions.



Abstract

 Since 1986 we have been studying a cohort of individuals from a region in China with

epidemic rates of gastric cardia cancer.  To assess the association of various exposures with this cancer

we have conducted numerous two-stage studies.  Two-stage studies are a commonly used statistical

design: stage-one consists of observing the outcomes and accessible baseline covariate information on

all cohort members; stage-two consists of using the stage-one observations to select a subset of the

cohort for measurements of exposures that are difficult to obtain.  When the outcomes are censored

failure times such as in our studies, the most common designs used are the case-cohort and nested

case-control designs (Samet and Munoz 1998).  One limitation of both these designs is that the

estimators of the cumulative hazards, and hence survival and absolute risk, are biased when some cases

are missing the second stage measurements (Mark and Katki 2001; Mark 2003).  In our cohort the

exposures of interest are potentially responsive to population-wide interventions.  Hence survival

estimates are crucial to public health decisions.  In all of our studies some cases are missing

measurements, either by chance or by design.  In this paper we present a class of nonparametric and

semiparametric cumulative hazard estimators that are unbiased regardless of case sampling fraction.

We analyze data from a study of the association of gastric cardia cancer with serologic evidence of .L

:C69<3 infection in which we sampled only twenty-five percent of available cases.  We estimate

differences in cancer incidence between individuals with and without infection.  Simulations based on

this study demonstrate that a wide variation in efficiency exists between estimators within a class.  We

characterize the mathematical form of the efficient estimators within each class; show the practical

implications for study design and analysis; and provide strategies for choosing an efficient estimator.

Computer code in R or S-plus for implementing these estimators is available from the authors.

KEY WORDS: absolute risk; auxiliary covariate; case-cohort; cumulative hazard; efficiency; nested-

case control; risk difference; robust estimation; survival; standardized survival;  two-stage studies;

weighted estimating equations.
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Introduction

 Nearly all large epidemiologic cohort studies initiated in the last thirty years have been

designed to estimate the association of a disease with exposures measured on biologic samples (Samet

and Munoz 1998).  Since measurements on such samples are typically expensive and consume scarce

resources, a class of statistical designs has risen where the goal is to reduce the number of

measurements while still obtaining estimates with adequate precision.  These designs, commonly

called two-stage studies by statisticians (Robins, Rotnitsky, and Zhao 1994; heretofore RRZ), and

"nested cohort studies"  by epidemiologists (Samet and Munoz 1998), have the following general

structure.  At the start of the cohort, time 0, investigators obtain biological specimens as well as

measurements on a large number of other covariates from each cohort member.  Endpoints of interest

are recorded up until some time, .  We refer to this collected covariate and endpoint data as the 7 stage-

one data, and designate it as [ [ 83 3.   In stage two, the  observed on all  subjects in the cohort are

used to select a subset of individuals on whom measurements on biological samples will be made.  We

call those measurements, .  For example, in the data analysis we present in section 6 ,  if anZ Z œ "3 3

individual has serological evidence of   otherwise.  Understandably all H. pylori  (Hp) infection; Z œ !3

two-stage designs call for sampling a smaller fraction of controls (individuals without the observed

endpoint) than cases.  In fact, since statistical efficiency is largely determined by the number of

observed cases, it is generally specified that  two-stage designs select for  measurement  "all theZ3

cases of interest, but only a subsample of the noncases" (Samet and Munoz 1998, p 8).  Choosing a

particular two-stage design requires consideration of the endpoint of interest, e.g. cumulative disease

incidence, or survival time; the risk parameter of interest, e.g., odds ratios, relative risks, or absolute

risks (survival probabilities); and the underlying models.  In epidemiology the latter generally entail

specifying a regression model relating outcomes to the exposures, , and to adjusting covariates, .Z N3 3

For cumulative incidence endpoints this is commonly a logistic model; for censored failure time data a

Cox Proportional hazards model (CPH) such as in (1).  RRZ give a comprehensive review of the

different statistical features of the proposed two-stage designs.  Samet and Munoz (1998) discuss the

implementation and motivation for these designs in specific settings, and present some of the important

findings produced by these studies.
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 We focus on studies where the endpoint is censored failure time.  Specifically, in section 6 we

analyze data in which the event of interest is the time, , to the development of gastric cardia cancerX3

(GCC).  Rather than , we observed the right censored event outcome , where X Ð\ ß Ñ \ œ 7383 3 3 3?

ÐX ß G Ñ G œ MÐ\ œ X Ñ MÐ † Ñ3 3 3 3 3 3,  is an independent censoring time, , and is the indicator function.?

As in most large cohorts, nearly all censoring was due to censoring by the end of follow-up at time,

7 ? ?œ œ " œ !5.25 years. We refer to individuals with as cases; those with  as controls.  Though a3 3

number of two-stage designs have been proposed for estimation with censored failure time endpoints,

nearly all are variations of the original nested-case control (NCC) (Borgan, Goldstein, and Langholz

1995) and case-cohort (CCH) proposals (Prentice 1986; Self and Prentice 1988).  The NCC and CCH

designs are by far the most common designs used in practice (Samet and Munoz 1998).  Both assume 

the CPH model; both specify that  be measured on all  cases.  The main distinction between the NCCZ3

and CCH designs is the control sampling schemes; we briefly review these in Appendix B.  For a

comprehensive  discussion of these and other related sampling schemes for two-stage studies with

censored time-to-event outcomes see Mark and Katki (2001).

 The primary focus of the NCC and CCH designs has been estimation of the  vector of: ‚ "

parameters, , in a CPH model such as (1)" " "9
X X X
9" 9#œ Ö ß ×

- - " "Ð?l^ Ñ œ Ð?Ñ Ð Z  N Ñ Ð"Ñ3 9 3
X X
9 9# exp .1 3

Here  is a -dimensional vector of  ,  and ,^ œ ÖZ ß N × : Z ß N3 3 3 3exposure covariates adjusting covariates, 3

N § [ N3 3 3.  Frequently  contains information from questionnaires, physical exams, and/or

measurements from laboratory procedures used to establish cohort eligibility, or to serve as baseline

measures of attributes of interest.  Though the emphasis has been on estimating , both the NCC and"9

CCH designs provide estimators of the cumulative hazards,  ; AÐ> DÑ

 ; |         A - 7 mÐ> DÑ œ Ð? DÑ .? ! Ÿ > Ÿ à D − Ð#Ñ(
!

>

where  is the support of  Just as estimates of  relative risks (  m ^ Þ <<ÐDÑ3 ) are obtained from the identity

<<ÐDÑ œ  exp , estimates of survival are obtained from  the identityÐ DÑ"X
9

WÐ>lDÑ œ  Ð Ð> DÑ Ñ Ð$Ñ exp  ; .  A

One limitation of the proposed cumulative hazard estimators is that unlike the estimators of , they"9

are biased if  any cases are missing  measurements (Mark and Katki 2001; Mark 2003).  ThisZ3
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limitation was the motivation for the research we present.  We have conducted a large number of two-

stage studies on our cohort from Linxian, China (see section 6); in each some cases were missing Z3

measurements.  The etiology of the missing case measurements can be divided into two broad

categories: missingness that occurs by ; and missingness that occurs by  (Mark andchance design 

Katki 2001; Mark 2003). Cases missing by chance arise from events outside of  investigators' control.

Indeed, due to the  mechanism, we suspect there are no large cohorts studies usingmissing by chance

biological specimens that can measure  on all cases.  In contrast, we define cases to be Z3 missing by

design if  investigators deliberately measure  on only a fraction of all available cases.  In section 6Z3

we describe the reasons why estimating survival is crucial to the context of our research;  the sources

and magnitude of the chance missingness in our studies; and the limitations in biological resources

which necessitated two-stage studies with cases missing by design.  

 Obtaining consistent survival estimators in two-stage studies with missing case information

was the initial impetus for this research.  As we will demonstrate, one can produce unbiased estimators

of survival by simple inverse probability weighting of the subjects with measured  (Mark 2003).Z3

However, as verified by our simulations in section 7, substantial differences in efficiency exist

between survival estimators all of which are unbiased.  In particular, we will show that the simplest

and best known inverse-probability-weighted estimator, the Horvitz-Thompson estimator (Horvitz and

Thompson 1952), is so inefficient, and so easily improved upon, that we conclude that it should never

be used.  Hence in this paper we focus on the factors that determine the efficiency of estimators all of

which are unbiased.

  The organization of the paper is as follows.  In section 2 we formally state the goals of our

inference, and the structure of the two-stage studies we consider.  In section 3 we define the term full

data estimators; then, applying, the general results of RRZ  on how to obtain two-stage estimators

from full data estimators, we derive a class of unbiased semiparametric and nonparametric cumulative

hazard estimators.  For the former we assume that  hazards are given by a CPH model (1); for the later

we make no assumptions about hazards at different levels of covariates.  In section 4 we define a

general method for implementing our estimators, which we call  ow 1s-estimation, and describe h the

efficiency of one  estimator1s-  relates to another.  In section 5 we apply the theorems of RRZ  to
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censored time-to-event data and derive the mathematical form of the most efficient estimators within

each class of estimators we consider.  We re-express the efficient form in terms of quantities already

familiar to researchers involved in observational studies, and show the general implications for study

design and analysis.  In section 6 we review features of several of our two-stage studies, and use a  -1s

estimating procedure to estimate the effect of Hp infection on absolute risks and risk differences.  In

section 7 we apply the general formulation of what constitutes efficient estimators presented in section

5, and propose specific estimators.  In simulations we demonstrate that the relative efficiency of these

estimators correspond to predictions from theory.  In the discussion section we provide a simple and

non-technical summary of the results and their practical consequences.  Annotated code in  R (Ihaka

and Gentleman 1996) and S-plus (6.0 release 2) that implements the  -estimating procedures is1s

available from the authors (Mark and Katki 2003).

  In this paper we restrict the mathematical results presented in Mark (2003) to that subset

necessary for understanding the practical implications of the origins of the efficiency differences in

unbiased estimators.  Additionally, to make the presentation more accessible, in the body of the paper

we express results only in terms of those functionals of the random variables required to understand

the proofs and their importance to applications.  Actually defining these functionals requires counting

process and martingale notation.  With the exception of two expressions in section 3.1 (these are not

essential for any subsequent results), this notation is confined to the appendices.  At points in the paper

where some readers may desire more details or clarifications, we explicitly reference the appropriate

sections in Mark (2003).  There the derivation and discussion of these and other results are presented

in a more general, more detailed, and more technical context.

    2.  Formal  Statement of  Inference, Data Structure, and Sampling Process

 2.1   Standardized survival, standardized risk difference, full data, and auxiliary covariates

    Our main goal of inference is to estimate conditional survivals (3), standardized survival=,

W Ð>l@ Ñ= † , and standardized risk differences.  In accord with usual epidemiologic parlance, we define

W Ð>l@ Ñ WÐ>lDÑ D −= †  as   the weighted sum over of the  , 4 m

W Ð>l@ Ñ œ WÐ>l@ 4 ÑAÐ4 Ñ à ! Ÿ > Ÿ Ð%Ñs † †"
4

‡ ‡,   .7
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Here  and represent specific points in the support of  and ;  the weights, , are functions of@ 4 Z N AÐ4 Ñ† ‡ ‡
3 3

4‡ chosen by the investigator which sum to 1.  In the analysis of the Hp data the only adjusting

covariate, , is  age, and we define   to be the observed marginal distribution of  in the cohort.N AÐ4 Ñ N3 3
‡

Had we wished to compare disease incidence in Linxian with those in different geographic areas we

could have used standardization weights for US, European, or world populations available at

htttp://seer.cancer.gov/stdpopulations/.cancer.gov.  For a given set of weights, the standardized risk

differences are a simple contrast

V.Ð>Ñ œ W Ð>l@!Ñ  W Ð>l@"Ñ Ð&Ñs s

where, for instance, we use  to represent .  Since we wish primarily to make inference about@! Z œ !3

survivals in groups of individuals, we assume that the support  is finite with levels.  Thoughm 5‡

cumulative hazards and survivals can be estimated at any time  for simplicity we assume we are>ß

interested in these quantities at the end of the study, and for the remainder of the paper set  .> œ 7

 Were resource limitation not a factor, one could measure  on everyone and obtain "full data ",Z3

L œ Ö[ ß Z × [ œ Ö\ ß ß E ×3 3 3 3 3 3 3. .  We  To distinguish endpoint from covariate data, we write, ?

assume the covariates in  are measured at time 0;   generally contains orders of magnitude moreE E3 3

measurements than the set of adjusting covariates, .  Though while designing a cohort study it isN3

essential to consider which adjusting covariates will be required, typically  is not formally specifiedN3

until the analysis stage. Then  is usually chosen to be the subset of  covariates in  that are known,N E3 3

or suspected, of being associated with , and or , and are not "on the causal pathway".  We refer toX Z3 3/

the (possibly empty) set of covariates that are in  but not , as E N3 3 auxiliary covariates.  Thus

E œ ÖN ß3 3 A3
+?B×.  The term auxiliary indicates that we do not wish to make inference about the

cumulative hazards  ; , conditional on .  In a sense made more precise in section 5 and in theA AÐ> DÑ 3
+?B

simulations, the  can substantially increase the efficiency of estimation when they are correlatedA3
+?B

with .  Z3

2.2.  Stage-Two Sampling Restrictions

 We define  if  is known for individual ; otherwise.  For most of the paper weV œ " Z 3 V œ !3 3 3

assume that conditional on  selection of individuals for measurement of  is independent with[ Z3ß 3

known, non-zero, probabilities,  that do no depend on  That is1
9
Ð[ Ñ Z Þ3 3
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  ,  .  19 3 3 3 3 3 3Ð[ Ñ œ T<Ð V œ "l[ Z Ñ œ T<Ð V œ "l[ Ð'Ñ‰
In the usual parlance of missing  data, restriction ( ) is consistent with being missing at  random' Z3

(MAR) (Rubin 1976).  As we frequently do for random variables, we drop the argument of a function,

and use the subscript  to indicate that it is a random variable. Thus we write , where3 13 9,

1 13 9 9 3, ´ Ð[ Ñ.   At the end of section 4 we extend the results to dependent sampling, and to

missingness that is not entirely under investigator control.

 Without loss of generality we specify the known sampling probabilities by

6913> Ð[ Ñ œ 2Ð[ Ñ Ð(Ñ1 <9 3 3
w
9 .  

Here  and are known, conformable, finite dimensional vectors of parameters and random<9 32Ð[ Ñ

variables, respectively.  It is important to note that the function   is not uniquely determined by2Ð † Ñ

the ; that is, neither the parameterization nor the dimension of equation (7) are unique.  For19 3Ð[ Ñ

instance, if  contains only information on sex, and stage-two sampling depends only on case status,E3

then two correctly specified models for ( 7) are

   6913> Ð[ Ñ œ MÐ œ "Ñ  MÐ œ !Ñ Ð)Ñ1 < ? < ?9 3 9 3 9# 31

6913> Ð[ Ñ œ MÐ œ "Ñ  MÐ œ !Ñ  Ð*Ñ1 < ? < ?9 3 9 3 9# 31  

< <9$ 9%     MÐ7+6/Ñ  MÐ0/7+6/Ñ

Here and .< ? < ? < <9" 3 3 9# 3 3 9$ 9%œ 6913> T <ÐV œ "l œ "Ñà œ 6913> T <ÐV œ "l œ !Ñß œ œ !

The usefulness of models such as will become evident when we discuss -estimation in section 4.Ð*Ñ s1

 We define  to be the smallest set of linearly independent vectors such that (7) is true, where[3
V

size refers to the dimension of the column space spanned by  (span ).  In our example2Ð[ Ñ 2Ð[ Ñ3 3

above, the dimension of  is two.  Letting     for some , then correctly specified[ [ ´ 2Ð[ Ñ 2Ð † Ñ3
V 6

3 3

models are those such that

span span  .Ð[ Ñ ª Ð[ Ñ Ð"!Ñ3 3
6 V

We consider models with equivalent spans to be identical, and restrict ourselves to covariate spaces

where the  are linearly independent.  We denote the scores from any logistic model with covariates[3
6

[ W6 6
3 3as ,

W ÐV  Ñ[ Ð""Ñ3 3
6 6

3 3ß9 =  .1

As usual the  are the partial derivative with respect to  of the log likelihood of .W V6
3 3<
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3. Estimators and Influence Functions

3.1  Full data estimators and full data influence functions

 Though our inferential focus is survival, cumulative hazards are the compensator of the

counting process, and, therefore, the "natural" scale for estimation. For this and other details on

counting process martingales, we refer the reader to Andersen, Borgan 1991.  Gill, and Keiding, 

 In full data studies the Nelson-Aalen estimator, ; , is the efficient nonparametricA 7sÐ DÑ

estimator of 2  (Anderson et al. 1991).  The maximum partial likelihood estimator,  , and theÐ Ñ s"

Breslow estimator,  are the semiparametric efficient estimators of 2 and the baselineA "s Ð ß Ñs9 7 "9 Ð Ñ

cumulative hazard (12) (Anderson et al. 1991),

   .A 7 -9 9
!

Ð Ñ œ Ð?Ñ .? Ð"#Ñ( 7

For the semiparametric model we write the cumulative hazard at any covariate level , by (D à DÑ œA 7 "9

A 7 "9
X ‡
9Ð Ñ Ð DÑ 5 ‚exp .  It is estimated in the obvious fashion.  To indicate the   1 vector of cumulative

hazards, we drop  from the arguments and write ( , or ( .  Since we are assuming the time ofD Ñ à ÑA 7 A 7 "9

interest is , we frequently drop the time argument.7

 Letting   ,  , denote the Nelson-Aalen and  estimators, we can, in a general sense, write! ! "s s s" 2

these estimators as the  , , that solve estimating equations of the form!s , − Ö"ß #×,

     .!
3œ"

8
, ,
3 3 3Y ÐL ß Ð\ Ñà Ñ œ ! Ð"$Ñe !

Each term in depends not only on the subjects data, , but also on .   represents theÐ"$Ñ L Ð\ Ñ Ð\ Ñ3 3 3e e

set of individuals at risk at time : e.g. .   For instance, using standard\ Ð\ Ñ œ Ö3 À \   \ ×3 3 4 3e

counting process notation (see A.1) when   then ;  , œ #ß œ Y ÐL ß Ð\ Ñà Ñ œ! " e !,
3 3 3
2 2 ' š! 3

7
Ð^ Ñ 

W Ð?ß Ñ W Ð?ß Ñ .R Ð?Ñ" ! "
3" " › ; and the maximum partial likelihood estimator , is the   that solvesß s" "

!' š ›
3œ"

8

! 3 3
" ! "7

^  W Ð?ß Ñ W Ð?ß Ñ .R Ð?Ñ œ !Þ" "  

 For the Breslow estimator one first estimates .  Then with  denoting  " ! 7s s3 A "s Ð ß Ñs9 , we can

similarly write the estimating equations as

     !
3œ"

8
$
3 3 3Y ÐL ß Ð\ Ñ à Ñ œ ! Ð"%Ñse " !;  .3

Note that the Y 5 :, ‡
3  are column vectors with row dimension , , and 1, for b=1,2,3 respectively.  See

section 2 of Mark (2003) for the explicit forms for  and , œ " , œ $Þ
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 Though the  are not iid, the estimators are asymptotically equivalent to a sum of mean 0,Y Ð † Ñ3

independent, influence functions (Anderson et al. 1991).  That is,

8  œ 8 H ÐL à Ñ  9 Ð"Ñ Ð"&Ñs
" "
# #Š ‹ "! ! !, ,  J, ,

9 3 9
3œ"

8

3 : 

where  is the underlying parameter being estimated.  ,  as the !, J,
9 3We refer to these H , − Ö"ß #ß $× full

data influence functions .  of The   ,  , and  are functions of theA 7 " 7sÐ Ñ Hs A "s Ð ß Ñs9 , respectively J,
3

observed data and the hazards; the explicit definitions are given in appendix A2 . For instance, for

, œ #ß H œ Ö^  /Ð?ß Ñ × .Q Ð?Ñ A2 gives  , and (15) becomesJ# "
3 ! 3 9 33 ' 7

"

8  œ 8 Ö^  /Ð?ß Ñ × .Q Ð?Ñ  9 Ð"ÑÞs" "
# #Š ‹ " (" " "9 3 9 3 :

 "

3œ"

8

!

   3
7

3.2  Estimators and influence functions for two-stage designs

 For two-stage designs, RRZ establish that the solutions to estimating equations

   ;    ; !
3œ"

8

3 9 3ß9
" , , "

3 3 3 3 3ß9 , 331 e ! 1 1, V Y ÐL ß Ð\ Ñ Ñ  ÐV  Ñ1 Ð[ Ñ œ ! , − Ö"ß #× Ð"'Ñ

produce consistent, asymptotically normal nonparametric and semiparametric estimators of the

cumulative hazard 2  and , respectively.  Here the  ofÐ Ñ "9 1 Ð[ Ñ, 3  are any conformable vector  non-

stochastic functions of  specified by the investigator   We denote estimators based on a given  as[ Þ3 1,

A "
~ ; .  Similarly, solutions to~
Ð1 Ñ Ð1 Ñ" #

   ;    ~!
3œ"

8

3 9 3ß9
" " ‡

3 3 3 3 3ß9 33 $1 e " ! 1 1,
3 3

2V Y ÐL ß Ð\ Ñ Ð1 Ñà Ñ  ÐV  Ñ1 Ð[ Ñ œ ! Ð"(Ñ

define a class of two-stage estimators of (12). We denote those estimators by  , ,  or ~ ~
A 7 A9

‡
$ 9Ð ß 1 Ñ Ð"

~
Ð1 Ñ#

7 "ß 1 Ñ 1 [ 1 Ð[ Ñ 1
~, . Here , is any scalar function of  ,and  is the function of   defined in$ 3 3

‡ ‡
$3 3 1# and

(A4.1).  The explicit estimating equations for (16) and (17) are given in (A3.1-A3.3) and in Mark

(2003, section 4).

 We write the influence functions that correspond to these classes of two-stage estimators as

H Ð1 Ñ œ V H  ÐV  Ñ1 Ð[ Ñ , − Ö"ß #ß $× Ð")Ñ, " J "
3 3ß9 3 3ß9, 3 3 3ß9 , 31 1 1b  , .

For  (18) follows directly from RRZ.  For , (18) is obtained by a Taylor series, − Ö"ß #× , œ $

expansion around  (appendix A.4).  Using notation analogous to the full data case (15), we express"9

the  two-stage estimators as a sum of their influence functions,

8 Ð1 Ñ  œ 8 H Ð1 Ñ  9 Ð"Ñ Ð"*Ñ
" "
# #Š ‹ "! !~   .,  ,

, 9 , :

3œ"

8

3
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From (19) it is clear that the asymptotic variances of the  are   ~!,
, , ,

, , X
3 3Ð1 Ñ IÒH Ð1 Ñ H Ð1 Ñ ÓÞ

 Let  (  be any nonparametric e.g. ; or semiparametric, e.g.,  exp  ~ ~ ~
A 7 A "ß Dß † Ñ ß Ð1 DÑß Ð Ð1 ÑDÑ" #

X

‚ Ð ß 1 Ñ WÐ lDÑA 7 " 79 $
~ ~ ~, , two-stage estimator of (2).  Then survival estimates, , are formed by replacing

A 7 A 7Ð DÑ ß Dß † Ñ; in (3) with ( . ~  Asymptotic distributions are derived by a straightforward application of

the functional delta method exactly as in Andersen et al. 1991.  We provide consistent estimators of the

variances of (3) (4), and (5) in Appendix A.ß

4.  The Simple True-  (STP) and -Estimators1 1s

 We define -  (STP) estimators to be estimators where  .  That is, these aresimple true 1 1 ´ !3,

the usual, inverse-probability-weighted, Horvitz-Thompson estimators.  However, rather than using the

notation in (18) and writing these STP estimators as , we denote their influence function byH Ð1 œ !Ñ,
3 ,

H Ð Ñ,
3 91 , which by (18) is

     H Ð Ñ œ V H, " J,
3 39 33ß91 1

 We define  to be procedures in which we continue to set , but replace1s-estimating procedures 1 ´ !3,

the known  in estimating equations (16) and (17) with an estimate, , of .  The predicted1 1 13ß9 3ß9
6
3sÐ[ Ñ

sampling probabilities, , are obtained by replacing  with its maximum likelihood estimate, ,1 < <sÐ[ Ñ s6
3 9

in a correctly specified model (7) with covariates .   We refer to estimators from such2Ð[ Ñ œ [3 3
6

procedures as .  RRZ  (proposition 6.2) showed that -estimators are consistent,1 1s s-estimators

asymptotically normal, and that the influence function, , is the residual of a population leastH Ð Ð[ ÑÑs3
, 61

squares regression of (20) on the scores from the prediction model, .   That isW3
6

H Ð Ð[ Ñ Ñ œ H Ð Ñ  T W Ð#"Ñs3 3 3
, 6 , ,6 6

91 1 

and , is the projection operatorT W,6 6
3

T œ IÒH Ð ÑW IÒW W Ð##Ñ,6 , 6 6 6
3 3 39

w w "
1 ‘ ‘ .

Since  is a residual, the variance of the -estimator is less than or equal to theH Ð Ð[ ÑÑ Ð[ Ñs s3
, 6 61 1

variance of the STP estimator for all .  Additionally, since residuals are non-increasing in the[6

dimension of the column space, if span span , the variance of the )-estimator isÐ[ Ñ ¨ Ð[ Ñ Ð[s3 3
7 6 71

less than or equal to the variance of the  -estimator.  For a more in-depth discussion of the1sÐ[ Ñ6

properties of  -estimating procedures, and proof that the -estimating procedures and the solutions to1 1s s
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estimating equations (16) and (17) generate the identical class of estimators, see Mark (2003, sections

5&6; appendix C).

   -estimation is the "natural" estimating procedure when the requirements that sampling is1s

independent and with known probabilities are relaxed.  In general, the dependent sampling we consider

is characterized as follows: partition the observed  into a finite number of strata and select a fixed[3

number of cases and controls from each stratum.  If we let be the saturated column space of[3
0

indicator variables generated by that partition, then we can use any -estimator with span span1s Ð[ Ñ ª3
6

[3
0 (RRZ, lemma 6.2).  Such dependent sampling commonly occurs.  For example, in the Hp study we

sampled a fixed number of cases and controls.  NCC risk set sampling is by design dependent.  We

review the definition of NCC sampling and provide appropriate -estimators in Appendix B.  We have1s

so far assumed that , or equivalently the  in logistic models (7), are known   If rather than1 <3 9 9, ß Þ

knowing , we only know there is a , such that    , then the estimator  has< < 1 < 19
‡ ‡ 6 6

36913> œ [ Ð[ Ñs3ß9

influence function given by (21) (RRZ, proposition 6.2)   For instance, to obtain consistent  -Þ s1

estimators for our Linxian studies we had to assume that we could correctly specify a logistic model

that accounted for the chance missingness. Given the nature of the events causing the missingness (see

section 6), we believed that missingness was related to neither  or .  Hence, any -estimator with[ Z s3 3 1

span span would be consistent.Ð[ Ñ ª Ð[ Ñ3
6 V

3

 Computer code for implementing the general class of  -estimating procedures is available1s

from the authors (Mark and Katki 2003).  This program handles a completely general data structure,

and gives estimates, and the variances, for conditional survivals (3), standardized survivals (4), risk

differences (5), and population attributable risks (for population attributable risk estimators and their

asymptotic distribution see appendix A.4 of Mark 2003).  We have used this program to produce

nonparametric survival curves for a paper analyzing the association of zinc levels in biopsy tissue with

esophageal cancer (Abnet et al. in press), and to produce semiparametric survival curves and risk

estimates for the nutrient analyses described in section 6.

Section 5:  Efficiency, Identifiability,  and Local efficiency

5.1  Efficiency and the optimal 1,
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   as the , and  as the  it is clear fromReferring to 1 1 13 9 3 9
" "

3 3 3ß9 , 3, ,V ÐV  Ñ1 Ð[ Ñ weight offset,

estimating equations (16) and (17), and influence functions (18), that the class of two-stage estimators

we consider are  of the efficient full data estimators.  Since specific"weighted versions with offset"

estimators differ only with regard to , efficiency differences are determined entirely by the choice of1,

the  function. We use to denote the optimal : that is, the  that minimizes  1 1 1 1 IÒH Ð1 Ñ H Ð1 Ñ ÓÞ, , , , ,
/00
,

, , X
3 3

By results of RRZ (1994), and Newey (1990), who showed that all regular nonparametric full data

estimators are asymptotically equivalent, the class of nonparametric estimators,  defined by (16,~
AÐ1 Ñ"

A3.1) contains (in the sense of asymptotic equivalence) all possible nonparametric cumulative hazard

estimators for two-stage designs.  Hence the estimator achieves the nonparametric efficiency~
AÐ1 Ñ/00

"

bound (Mark 2003).  In contrast, for semiparametric estimators, we have followed a "practical

recommendation" of  RRZ (p850) , and, restricted consideration to a subclass of all possible two-stage

semiparametric estimators that use the "full-data efficient   function" (Mark 2003).  We refer the2Ð Ñ

reader to RRZ for the general definition of the  functions, and its specific form in two-stage2Ð Ñ

estimators of (1).  Thus we call estimators using the  that minimizes the variance of  and , the1 H H, 3 3
2 3

restricted-class efficient (RC-efficient) estimators (Mark 2003).

 For , direct application of proposition 2.3 of RRZ establishes that , − Ö"ß #× 1 œ IÒ/00
3ß,

H l[ Ó Ð=ß Ñ 1 1 œ IÒ3
J, ‡

3 9.  By applying the same result to estimators of  with fixed , we find that  A " 2 3

H l[ ÓÞ Ð ß IÒ H l[ ÓÑ3 3
J J

3 39
3 3  It is simple to then show that the variance of  ,   is minimized with~

A 7 "
~
Ð1 Ñ#

1 œ ! 1 1 IÒ H l[ Ó2 3 3
3 ( Mark 2003, appendix B).  By definition of   ( A4.1 ),  =   ./00

3
J

3

 Replacing  with  in (18), demonstrates that these efficiency results correspond to1 H [, 3
J,
3’ ¹ “

intuition: every subject contributes  to estimation; subjects with measured  provide theI’ ¹ “H [ ZJ,
3 3 3

additional information in their observed "residual", .13 9
" J, J,

3 3 3, ÐH  H [ ÑI’ ¹ “
 In general we can express the influence function of the -estimators (21) in terms of (18) by1s

setting  .  Using the double expectation rule, conditioning on 1 œ T [3, 3ß9
,6 6

31 L3, and applying

sampling restriction (6), we find that T œ I,6 I Ð"  ÑH ‚ Ð[ Ñ ‚ Ð"  Ñ[ [’ “ ’1 1 13ß9 3ß9 3ß9
J, 6 w 6 6
3 3 3 3

w

“"

3 3
V.   It is evident that for any ,  -estimators based on predicted probabilities from2Ð[ Ñ ª [ s1

logistic model (23)

6913> Ð[ Ñ œ 2Ð[ Ñ [ [ œ 1 Ð#$Ñ1 < < 19 3 3
w w "
" # 3ß9

/00 /00 /00
3 3 3ß, +  ; ,    
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are efficient, or RC-efficient (Mark 2003, appendix C). 

5.2  Identification of , and implications for study design and analysis1/00,

 The optimal  1Ð I† Ñ H [, , is a function of  unknown parameters.  RRZ proposition (2.4)’ ¹ “J,
3 3

established that can be replaced by a consistent estimate,  , without changing the asymptotic1 1s
/00 /00
, ,

distributions of two-stage estimators.  That is, an estimator using  achieves the efficiency, or RC-1s
/00
,

efficiency, bound.  If  can be consistently estimated, we say the efficient estimator is identified.   If1/00,

not, then variance of the efficient influence function represents an unknown lower bound that no

estimator is guaranteed to achieve.

 Were the support of [ 13
/00
,discrete, could be consistently estimated by the empirical  average

of the  among individuals with R  within each level of  ;  a -estimator saturated in theH œ " [ s3
J,

3 3 1

discrete  obtains that efficiency bound.  In time to event data,  has the continuous component,[ [3 3

\ \ Ð ßE Ñ [ § [3 3 3 3 3
6. Unless  were a deterministic function of , there is no discrete subset such? 3

that   In the remainder of this section we approach the task ofI I’ ¹ “ ’ ¹ “H [ œ H [ ÞJ, 6 J,
3 3 3

conditioning on  and increasing efficiency. We do this by re-expressing in terms of relative\ 13
/00
,

risks, survivals, and covariate distributions.  We discuss conditions under which each of these can be

consistently estimated, and examine the implications for study design and analysis.

 We re-express  Mark 2003) as1 Ð/00
3ß,

1/003ß, =II H [ ßZ œ H [ ß @ T<Ð@l[ Ñ.@ Ð#%Ñ’ ¹ “ (J, J,
3 33 3 3 3

i

Š ‹  .

In the design stage, a crucial consideration is what, if any, auxiliary variables should be measured.

From (24) it is clear that for  to be optimal, it is sufficient that for any larger set,  , A A A+?B +?B
3 33

+?B 

T @ \ ß ß N Ñ œ T @ \ ß ß N Ñ Ð#&Ñ<Ð l <Ð l3 3 3 3 3 33
+?B +?B

3? A ? A, , .

That is, we should collect all auxiliary information that provides additional knowledge about the

distribution of the incompletely measured covariates  at any time on study   Z Þ3 Letting  be some@1

reference level of interest in parameterize the the "i , we can  in (24) in terms of T<Ð@l[ Ñ3 exposure

odds "

O œ T<ÐZ œ @l[ Ñ T<ÐZ œ @ l[ Ñ3ß@ 3 3 3 3
"‚ . Ð#'Ñ
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Using Bayes' rule, T<Ð l[ T<Ð\ ß l@ Ñ œ @ß E Ñ ‚ T<Ð@l E Ñ T<Ð\ ß l E Ñ3 3 ? ?3 3 3 3 3 3   , and a non-‚
informative censoring assumption, ,  (26)T<ÐG   =lX   =ß Z ßE Ñ œ T<ÐG   =lX   =ßE Ñ3 3 3 3 3 33

becomes  (Mark 2003, appendix D)

O œ <<Ð\ l@ WÐ\ l@ ßE Ñ T<Ð@lE Ñ T<Ð@ lE Ñ Ð#(Ñ3ß@ 3 3 3 3 3
" "ß E Ñ WÐ\ l@ßE Ñ3 3 3

?3 Š ‚ ‹Š ‹‚
Here ,<<Ð\ l@ W3 E Ñ Ð\ l@ßE Ñ3 3 3 and  are conditional relative risks and survival times when the

conditioning event is  rather than the .  Then (25) is true ifÐZ ßE Ñ ÐZ ß N Ñ3 3 3 3

W Ð?lZ ß N ß Ñ œ WÐ?lZ ß N ß Ñ ! Ÿ ? Ÿ Ð#)Ñ3 3 3 33
+?B +?B

3A A 7;  

and

TÐZ lN Ñ œ TÐZ lN Ñ3 3 3
+?B +?B
3 3 3,  ,  .A A Ð#*Ñ

Epidemiologists refer to (28) as containing all A3
+?B independent predictors of  outcome; and (29) as

A3
+?B containing all .independent predictors of exposure

 The requirements for efficient analysis are conceptually and mathematically equivalent to those

in the design stage. That is, to estimate , we need only include in the conditioning event that subset1/00,

of  that contains the independent predictors of outcome and exposure.A3
+?B

5.3  Efficient and locally efficient estimators

 Though for any given  it is impossible to know with certainty whether (28) or (29) is true,A+?B
3

these are the exact considerations required to control confounding.  As described in section 2,  isN3

frequently defined in the analysis stage to be the subset of such that (28) and  (29) areE3 

"approximately" true when  is removed from the conditioning events on the left hand side.  IfA3
+?B

successful in selecting all of the disease risk factors in  thenN3

WÐ?lZ ß N Ñ œ WÐ?lZ ß N ß Ñ ß ! Ÿ ? Ÿ Ð$!Ñ3 3 3 3 3
+?BA 7  

and (27) becomes

O œ << Ð\ @ß N Ñ ‚ ‚ T<Ð@lE Ñ T<Ð@ lE Ñ Ð$"Ñ3ß@ 3 3 3 3
"| .?3 W Ð\ l@ß N Ñ WÐ\ l@ ß N Ñ3 3 3 3

"‚ ‚
The identifiability and efficiency results we give in this section assume (30) is true.

  that if we can consistently estimate each term in From (31) it is clear O3ß@ we can estimate  .1s
/00
,

For both the nonparametric and semiparametric models, the second and third terms can be estimated by

WÐ\ l@ ß N Ñ Ts
~  and 3 3

† Ð@ lE Z E E†
3 3 3 3), the empirical average of within levels of  (here we assume  has finite

support; see Appendix D Mark 2003 for the case where the support of  is not finite  ).  For theE3
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semiparametric model,  can be estimated by   <<Ð?l^ Ñ << Ð?l^ Ñ œ3 3
~  exp    The  and ~ ~ ~

Ð ^ ÑÞ WÐ\ l@ ß N Ñ" "
X

3 3 3
†

can come from estimates based on any  , .  Hence, the semiparametric RC-efficient estimators of 1 12 3
‡

9"

and exp  are identified.  In contrast, the nonparametric model provides no obvious estimatorA 7 "9 3
X
9Ð Ñ Ð ^ Ñ

of  If  were small<<Ð?l^ Ñ 53 .   , and the number of cases large, one could theoretically use kernel smooths‡

to estimate hazards, and hence 'srr .  We do not explore this possibility further.  Instead, in section 7.3 we

propose several  locally efficient estimators (LE-estimators).  LE-estimators approximate by making1/00,

assumptions about We denote the resultant approximations  .  <<Ð?l^ Ñ3 by  .  If the assumptions about1s,
PI

the 's are correct, then  is a consistent estimate of , and the LE-estimators are efficient.rr 1 1s,
PI /00

,

Regardless of the truth of the assumptions, the proposed -estimators are consistent.PI

Section 6:  Two-stage studies conducted on the Linxian Cohort: Goals, Constraints,

and Data Analysis

6.1  Two-stage studies with cases missing by chance

 Since 1986 we have been studying a cohort of approximately 30,000 individuals from Linxian,

China, a region with epidemic rates of GCC cancer (Blot and Li 1985; Blot et al. 1993).  The cohort

was assembled to investigate the hypothesis that one or more of the widely prevalent nutrient

deficiencies contributed to this high GCC incidence.  After following the cohort for 5.25 years and

recording data on incident GCC and censoring events, we initiated four major studies where the Z3

were measurement(s) of a group of related nutrients (Mark et al. 2000; Mark et al. Abnet et al.2001; 

2003, Taylor et al. 2003).  We wanted to estimate nutrient-GCC associations with as much precision as

possible, so for these studies our design called for sampling one-hundred percent of the 402 incident

GCC cases.  Despite the fact that virtually one-hundred percent of our cohort consented to giving

blood at the beginning of the study in 1986, we discovered that accidents in sample processing,

storage, shipping, or laboratory evaluation, prevented measurements for  10% of  theapproximately

cancers (Mark et al. 2000).  Using the standard case-cohort estimators of relative risk we found that

serum levels of selenium and vitamin E were inversely related to cancer incidence (Mark et al. 2001;

Taylor et al. 2003).  The strongest effect was for selenium where individuals in the highest quartile of

selenium had approximately half the cancer risk of those in the lowest ( Mark et al.  ).  A variety2001

of strategies for population wide nutrient supplementation to eliminate these deficiencies are currently
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being considered by our colleagues at the Cancer Institute, Chinese Academy of Medical Sciences.

Decisions of whether and how much to supplement depends on estimates of absolute risks.  Using a  -1s

estimating procedure we estimated that the correction of both selenium and vitamin E deficiencies

could reduce the GCC incidence by approximately 30%.  We are currently preparing a manuscript

describing these results.

 Many of the two-stage studies we have initiated in the last four years have examined  the

association of GCC with recently characterized DNA polymorphisms (Stolzenberg-Solomon et al.

2003; Savage et al. in press; Roth et al. in press; ubmitted).  Samples suitable for  DNAMahabir et al. s

measurements were not collected until 1991, and then only on a subgroup of the remaining cohort.

Overall we measured polymorphisms in approximately 20% of the cases from 1991-1996.  Thus, in

these studies 80% of the cases were missing by chance.

6.2  "Exploratory" two-stage studies where cases are missing by design 

 By the time we designed the serological studies of nutrients, numerous other exposures that

could be measured in serum had become of interest.  Since our total serum quantity was quite limited,

and the list of exposures of interest large, we initiated "exploratory" two-stage studies in which we

deliberately sampled only a fraction of cases (Abnet et al. 2001; Limburg et al. 2001).  Our goal was to

sample only the number of cases and controls required to produce precise enough estimates of

exposure prevalence, assay reliability, and risk magnitude to decide whether to commit additional

resources (Mark and Katki 2001).  In one "preliminary study" where the exposure was the fungal-

produced toxin fumonosin, we found the newly developed measurement procedure was not reliable,

and have not initiated a larger study (Abnet et al. 2001).  In contrast, due to the results from the

"exploratory" study on the association of GCC with serologic evidence of . , we have begun aL :C69<3

much larger two-stage study.

6.3  Background information on the association of Hp with GCC

  Cancers that arise in the proximal 2-3 centimeters of the stomach are called gastric cardia

cancers (GCC).  These differ with regard to population rates, and some individual level risk factors,

from stomach cancers that arise outside of the cardia (GNC) (Devesa, Blot, Fraumeni 1998).  In the

last decade epidemiologic cohort studies have found that individuals with Hp infection are at increased
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risk of GNC;  relative risks ( ) range from two to four (<< =w Helicobacter and Cancer Collaborative

Group 2001). The quantity, consistency, and biologic plausibility of the evidence is such that Hp is

categorized as a class 1 human carcinogen (International Agency for Research on Cancer 1994).

 Prior to our study, only a few small studies, case sizes ranging from 4-12, examined the Hp-

GCC association.  All were from first-world Western nations.  The consensus was that Hp was

"protective" for GCC, with  0.5 (rr ¸ Helicobacter and Cancer Collaborative Group 2001; Dawsey,

Mark, Taylor, et al. 2002). Various mechanistic hypothesis have been advanced to account for the

opposite association of Hp on GNC and GCC (Blaser 1999).

6.4  Design and analysis of the Hp-GCC study using a cohort from Linxian, China

   Based on dissimilarities between the populations and on differences in the prevalence ofß

esophageal adenocarcinomas which can reduce the accuracy in diagnosing GCC (Limburg et al 2001;

Dawsey et al. 2002), we hypothesized that the Hp-GCC association in Linxian might differ from that

found in Western populations.  In accord with the goals for "exploratory" studies given above weß

sampled approximately 25% of the GCC cases (100 cases) and 7% of controls (200 controls) that

occurred in the cohort by 5.25 years (Limburg et al. 2001).  We measured serum antibodies and7 œ

found an Hp prevalence, (Hp , ) of approximately 65%, and a of approximately two for Hp 
3Z œ " rr 

individuals.  The only other major independent risk factor for GCC in this population was age: age

greater than the cohort median age  increased GCC risk by a factor of 3.5.ß ÐN œ "Ñ3

 Table 1 contains estimates of covariate specific survivals (3), age standardized survivals (4),

and risk differences (6) based on the CPH model (1) with  and  indicator variables.  Since a fixedZ N3 3

number of cases (n=200) and controls (n=100) were sampled, we used a  -estimator to estimate both1s

" A 7 ?9 9 3 3 and .  In particular, we used logistic model (9), the model saturated in .  ThroughoutÐ Ñ Ð ß N Ñ

this paper we denote this estimator by  .  At each level of age, the Hp  group had lower1 ?sÐ ß N Ñ 

survivals than the Hp  group. Within levels of Hp exposure, survival was higher in the younger group

(J0).  We estimated the standardized  risk difference to be 1.08, with a 95%  confidence interval whose

lower limit just excludes zero.

 We contributed the data from our study to a pooled study examining Hp and gastric cancer

risks.  The overall conclusion of that analysis was that there was no evidence of an Hp-GCC
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association ( .  We did not share that interpretation.Helicobacter and Cancer Collaborative Group 2001)

Rather we argued that tests for heterogeneity of risk estimates by geographic region were highly

significant (Dawsey et al. 2002), and that pooling the risk estimates from Western populations and

Chinese populations was not appropriate.  We have currently initiated a larger study sampling from the

approximately 1000 incident GCC that have accrued through 2001( 15 years).  This is also a study7 œ

where cases are missing by design; however here the motivation for the designed missingness is

opposite to that described above.  Based on the Hp prevalence and risk estimates from the

"exploratory" study, we determined that measurements on all 1000 GCC were not needed to achieve

the precision required to eliminate type 1 error as a viable explanation for our earlier findings.  The

simulations in section 7 are based on the structure of this new study.  Similar simulations were used to

help arrive at the sampling fractions used in the actual study.

Section 7: Simulations

7.1  Simulation parameters and definition of relative efficiency

 For all simulations the marginal covariate probabilities were , and ;T<ÐN"Ñ œ !Þ& T<ÐZ "Ñ œ !Þ'&

X Ð?Ñ3 9 was specified by CPH model (1);   was exponential; censoring was independent.  The magnitudes-

for the baseline hazard and competing risks were chosen to produce approximately 1000 expected cases in

a cohort of size n=6600 by time .   Unless otherwise noted,  exp  ( ).  The V-J7 "Ð Ñ œ # << œ #9" @

association was altered by changing the conditional probabilities, .  Stage 2 sampling wasTÐZ "lN"Ñ

binomial, and depended only on case status (8).  Control sampling was 15%.  For the simulations in Tables

2 and 3, 25% of cases were sampled, resulting in a control to case ratio of approximately  3:1.  In Figures 1

and 2 case-sampling percents are indicated along the -axis.B

 Each of the results represents the average of 2000 realizations.  All estimators of survivals and

"9 were unbiased: the mean of the estimators was always within 0.1% of  the truth.  The coverage for

95% confidence intervals ranged from 93.4% to 95.8%.  Consequently, rather than present the

estimator specific averages in the tables, we report only relative efficiencies (RE), which we define as

the ratio (times 100) of the variance of a given estimator to the variance of the STP estimator.  The

smaller the RE, the greater the efficiency.  Since our focus is on survival estimation, we do not report

the RE's of estimators of ."9
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7.2   STP, RC-efficient, and   semiparametric estimators of survival1s

 The data in Table 2 were generated from CPH model (1) with ;  was estimated" 79# œ ! WÐ l@Ñ

by fitting the one-covariate CPH model,  exp( .  For simulations on the left hand side of- "9 9 3Ð?Ñ Z Ñ1

Table 2, ; .  For simulations on the right, rr rr@ @œ # WÐ l@!Ñ œ *!à WÐ l@" œ )"Ñ œ !Þ&ß7 7

WÐ l@!Ñ œ *!à WÐ l@" œ *&Ñ N7 7 .  In these simulations  is an auxiliary variable rather than a risk factor.3

For example,  might be a surrogate for , such as evidence of gastric inflammation found on aN Z3 3

biopsy obtained at the beginning of the study.  We compare  -estimators based on logistic model1 ?sÐ Ñ

(8), with the -estimator based on (9) at five different levels of V-J association.  We focus first1 ?sÐ ß N Ñ

on the  simulations.rr@ œ #

 When  ,  and  are independent  Hence the  and  estimatorsT<ÐZ "lN"Ñ œ !Þ'& Z N Þ Ð Ñ Ð ß N Ñs s3 3 1 ? 1 ?

are equally efficient, and considerably more efficient than the STP estimator.  Since the 1 ?sÐ Ñ

estimator makes no use of the auxiliary variable, its RE is unchanged as  increases.  InT<ÐZ "lN"Ñ

contrast, the efficiency of the  estimator increases (RE decreases).1 ?sÐ ß N Ñ

 Differences in the efficiencies between two-stage estimators is largely determined by the extent

to which information from cases with  is used.  In the simulations, the magnitude of theV œ ! œ #3 @rr

efficiency gains for both  -estimators is greater in the  than  strata .  These greater gains reflect1s @" @!

the fact that there are more cases, and hence more cases with missing measurement, in the stratum.@"

When , 78% of the missing cases occur in the  group.  In contrast, when  ,  49% ofrr rr@ @œ # @" œ !Þ&

the missing cases occur in the  stratum.  Here both strata have nearly identical RE's.  Contrasting the@"

two sets of simulations with regard to estimation of , we find lower RE's when 2 . TheWÐ l@"Ñ œ7 rr@

expected number of missing cases for the 2 simulation is 775; for the 0.5, the expectedrr rr@ @œ œ

number is 209.

 The comparable nonparametric -estimators for the Table 2 simulations produced the same1s

patterns and are not shown. Variances of the nonparametric estimators were five to ten percent larger

than their semiparametric counterparts.

 The first two rows of Table 3 contain results for the RC-efficient estimator, which we denote

by  , and the -estimator of standardized survivals for the semiparametric model (1) with~
W Ð ß N Ñs

/00
1 ?

" "9 91 2œ #ß œ $.  As expected, the RE's of  both estimators are less than one, with the RE of
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W Ð ß N Ñ Ws
~ ~lower than that of  .  In Figure 1 we present the relative efficiencies of the  and/00 /00

1 ?

1 ? 7sÐ ß N Ñ W Ð l@"Ñ estimators of  at four different case sampling probabilities: 12.5% 25%,50%, or 90%.=

The positive slope of the line indicates the efficiency gains decrease as sampling fraction increases.  At

12.5% case sampling the RE of the  estimator is 35%; at 90% case sampling the RE is 59%.~
W

/00

Similarly, differences in efficiency between the (solid line) and  (dotted line) estimators~
W Ð ß N Ñs

/00
1 ?

diminish with increasing case-sampling percentage.  Both these findings accord with the prior

observation that efficiency gains depend on the number of missing cases.  The same explanation

accounts for the greater efficiency gains for estimators of  compared to  estimators ofW Ð l@"Ñ= 7

W Ð l@!Ñ Z œ "=
37  in Table 3.  Eighty-five percent of the expected 1023 cases have .

   In Figure 2 the solid line is a plot of  the ratio of  the variance of the estimator of~
W

/00

W Ð l@"Ñ= 7  at each of the four case-sampling probabilities, to the variance of the STP estimator at 90%

sampling.  The RC-efficient estimator has a lower variance when 25% of the cases are sampled, than

the STP estimator has when  90% of the cases are sampled.  The dotted line compares the variance of

W W
~ ~at each case-sampling percent, to the variance of  at 90%.  The dashed line plots the/00 /00

corresponding ratios for the STP estimator.  Though clearly for both estimators the variances increase

as case sampling decreases, the rate of increase is greater for the STP estimator.  An STP estimator

loses all the information from each missing case;  the estimator retains the information contained~
W

/00

in .I’ ¹ “H [J
3 3

3

7.3   STP,   ( and locally efficient nonparametric estimators of survival1s ?,J), 

 The last seven rows of Table 3 contain efficiency results from three simple local efficient

estimators SLE insured local efficient estimators ILE( ) ( ), and the .   , two  estimator Each of the1 ?sÐ ß N Ñ

corresponding   and use identical estimates,  , of  .  However, SLE-estimates areSLE's ILE's 1 1sPI
1 1

produced by setting  in (16,or  A3.1), whereas ILE-estimators are -estimators based on1 œ 1s s"
/00
1 1

prediction model (23) with  replaced by  .   By construction, ILE-estimators must be at least as1 1s
/00 /00
" 1  

efficient as -estimators, even when   is based on a misspecified  (Mark 2003).1 ?sÐ ß N Ñ 1 Ñs"
PI <<Ð\ l@3

SLE's do not share this property.  For example, for the  and  estimators,   SLE-correct ILE-correct 1s"
PI is

estimated from  a correctly specified model for <<Ð\ l@3 Ñ.  Specifically, we assumed exponential

hazards within each  level; estimated the hazards by dividing the number of observed cases by totalZ3
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person-time; and estimated  as a ratio of the hazards.  Both the SLE and ILE correct<<Ð\ l@"3 Ñ

estimators attain the nonparametric efficiency bound.  In contrast, the SLE and ILE  and prior null

estimators use misspecified 's.  The   estimators set  0.5, the pooled<<Ð\ l@ <<Ð\ l@"3 3Ñ Ñ œprior

estimate of  from the prior studies. The ; these would be therr null  estimators set <<Ð\ l@"3 Ñ œ "

efficient estimator under the null hypothesis.  Table 3 shows that for estimators of  not only isW Ð l@!Ñ= 7

the SLE-prior estimator less efficient than the -estimator, it is also 8% less efficient than the1 ?sÐ ß N Ñ

STP estimator.  In contrast, the ILE-prior, as well as the ILE-null are, in these simulations, as efficient

(to two significant digits) as the ILE -correct.

Discussion

 Two-stage studies are commonly used in epidemiology as a resource-effective means of

estimating the association of disease with exposures whose measurements consume a substrate which

is limited in quantity.  When estimating survival, the procedures proposed by the case-cohort and

nested case-control designs are biased if cases are missing exposure measurements.  In this paper,

referring to our Linxian studies as examples, we describe how case-missingness arises regardless of

investigator intent, and why designs which deliberately sample a fraction of cases are frequently

desirable.  Applying results of RRZ, we derive a class of nonparametric estimators, and a class of

semiparametric estimators, that provide unbiased estimates of cumulative hazards and survivals when

cases are missing covariate data.  We use a semiparametric estimator to analyze data from a study in

which only twenty-five percent of cases were sampled; we find significant differences in age-

standardized survivals between subjects with and without serologic evidence of   infection.H. pylori

 Through simulations we demonstrate that the variation in efficiency between estimators within

a class is of practical consequence.  Efficient estimators make better use of the data observed in stage-

one to provide information on the exposures not observed in stage-two.  We express the optimal

estimators in terms of the familiar quantities of relative risks, survivals, and exposure prevalence; we

provide practical strategies for using this formulation to construct estimators with desirable properties.

In the design stage, efficiency considerations require collecting information on all covariates suspected

of being independent predictors of either exposure or disease.  For the analysis stage, we provide a

robust procedure ( -estimation) that incorporates these independent predictors into estimation.  S-plus1s
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and R code for implementing these procedures is available from the authors (Mark and Katki, 2003).

Given the ease of  implementation, and the considerable efficiency advantages even the simplest of -1s

estimators possess when compared to the Horvitz-Thompson (STP) estimator, we recommend that the

later never be used for estimation of survival from two-stage designs.

Appendix A. Estimating equations, influence functions, and variance estimators  

 In this appendix random variables are explicitly defined for a univariate counting  process such

as is appropriate for the semiparametric estimators with CPH model (1).  For nonparametric

estimators, or semiparametric estimators with a stratified CPH model, the processes should be

interpreted in terms of the standard multivariate extension (Anderson et al., 1991).  For instance, in

nonparametric estimation ,  is the  estimator with row entries ; ;   is~ A 7 A 7Ð 1 Ñ 5 ‚ " Ð ß 1 DÑ R Ð?Ñ" " 3
‡

5 ‚ " ß 5 >2‡ with the '  row defined as  R Ð?Ñ œ "ß MÐ^ œ 5 Ñ ß X Ÿ G35 3 33iff   ,  and .  When weX ?3 Ÿ

can do so without confusion, and to indicate that any consistent estimator of a parameter will suffice,

we drop the  argument  from two-stage estimators and influence functions; e.g., we write  for~
1, A 7Ð Ñ

A 7 7 7
~ , .  To estimate cumulative hazards and survivals at some time , substitute  for   in theÐ 1 Ñ > Á >"

upper limit of the integrals that define the cumulative hazard estimators.

 EÞ"  Definitions of counting process notation. For more details see Anderson et al.  (1991), and

for weighted processes, Pugh (1993).

R Ð?Ñ œ " ß X Ÿ G ] Ð?Ñ œ "ß ÐG • X Ñ3 3 3 3 3 3 iff  and ; iff  .X ?3 Ÿ ?Ÿ  )

.Q Ð?Ñ œ .R Ð?Ñ  . Ð?Ñà . Ð?Ñ œ ] Ð?Ñ Ð? ^ Ñ3 3 3 3 3 3A A - | .

W Ð?Ñ œ V W Ð?ß Ñ œ ] ^ Ñs! ! X
3 3! !

4œ" 3œ"

8 8

3 3] ? à ? Ð( ) ( )" " exp .

.Q Ð?Ñ .R Ð?Ñ  ] Ð?Ñ .Q Ð?ß Ñ œ .R Ð?Ñ  ] Ð?Ñ
~ ~ ;   exp  .~ ~ ~ ~

3 3 3 3 3 3=  . Ð?Ñ . Ð ?ß Ñ Ð ^ ÑA " A " "9 3
X

    exp  ;~ ~ ~
W Ð?Ñ œ V W Ð?ß Ñ œ V ^ Ñ

! !

3 9 3 9
" " X

3 3 3! !
4œ" 3œ"

8 8

3 31 " 1 ", ,] ? à ] ? Ð( )  ( ) 

  exp  .~ ~ ~~ ~
W Ð?ß Ñ œ ^ Ñà I Ð?ß ÑW Ð?ß Ñ

" X !
3 9

"" " " " "!
3œ"

8

3 3  ( )  ] ? ^ Ð Ð?ß Ñ œ W"

 = ;     for~ ~ ~ ~
3 8 8 W Ð?ß † Ñ = Ð?ß † Ñ

637:" " " 4
3ß9 3

X 4!
3œ"

8
3 3 3 31 ? " " ÒV3 Š ‹Š ‹^  IÐ\ ß Ñ ^  IÐ\ ß Ñ

4 − Ö!ß "× I /Ð? Ñ = Ð?ß Ñ= Ð?ß Ñ Ö^  /Ð?ß Ñ×
637: 637:

; , = ;    ~ ~
Ð?ß Ñ" Ò " " " Ò "9 9 9 3 9

" ! "
!3 3 I Ò Ð

  = ' 7

.Q Ð?ÑÑ Ð Ö^  /Ð?ß Ñ× .Q Ð?ÑÑ
637:

3 3 9 3!
X   means limit in probability.' 7

" ÒÓÞ Here  
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A.2 the ull data influence functions (Anderson et al. 1991 ) :   fH3
J,

H œ = Ð?Ñ .Q Ð?Ñ 3J !
3 !

"
3

1 '  ‘7 7;  H œ Ö^  /Ð?ß Ñ × .Q Ð?ÑJ "
3 ! 3 9 3

2 ' "   ;

H œ = Ð?ß Ñ .Q Ð?Ñ  H /Ð?ß Ñ .J$ ! J
3 ! !9 3 9

"
3

w' ' ‘7
" "2 7

A "9 9Ð?ß Ñ.

A.3  Two-stage estimators of    A 7 " A 7Ð Ñß Ð Ñ9 9,

  . ~ ~
A 7 1 1 1Ð ß 1 Ñ œ V W Ð?Ñ .R Ð?Ñ  ÐV  Ñ1 Ð[ Ñ ÐE$Þ"Ñ" 3 3 3 3ß9 " 33ß9 3ß9

" "

!

! "" (
3œ"

8 7 Š ‹
  is the  that solves~
" "Ð1 Ñ2

  ~" (
3œ"

8

!
3 3

7

1 " 1 13 9 3ß9
" "

3 3ß9 3, V œ ! ÐE$Þ#Ñ3 Š ‹^  Ð?ß Ñ .R Ð?Ñ  1I ÐV  Ñ Ð[ Ñ
#

 .

To estimate  ,  first estimate ~
A 79

‡
$Ð ß 1 Ñ" "

~ ~  in A3.2;  thenÐ1 Ñ Ð1 Ñ# 2

 ,  .~ ~
A 7 1 1 19

‡ " " ‡
$ 3 9 3ß93 3 3ß9 3Ð ß 1 Ñ œ V ÐV  Ñ1 Ð[ Ñ ÐE$Þ$Ñ" "

~ ~
Ð1 Ñ W Ð?ß Ð1 ÑÑ .R Ð?Ñ # 3

3œ"

8

!

! "! '  ‘š ›7
, 32

A.4   To show that when  (18) is the influence function for ~
, œ $ß Ð1 ÑA 7

~ , , we write9
‡
$Ð ß 1 Ñ" #

A 7 " A 7 " A 7 A 7 A 7 A 7 "
~ ~ ~ ~, , ,   + , ) .~
9 9 9 9 9

‡ ‡ ‡ ‡
9 9 9$Ð Ð1 Ñß 1 Ñ  Ð Ñ œ Ð ß 1 Ñ  Ð ß 1 Ñ Ð ß 1 Ñ  Ð2 3 3 3š › š ›" " "

~
Ð1 Ñ ß ß# 9 9

Using  a Taylor series expansion of   around  as in Theorem VII 2.3 Anderson et al. (1991), the~
" "Ð1 Ñ# 9

first term in the right hand side is  .  Multiplying by ,~
Ð Ð1 Ñ  Ñ /Ð?ß Ñ Ð?Ñ .?  9:Ð"Ñ 8" " " -2 9 9 9!

w "
#' 7

and replacing estimators with their influence functions gives

    =  .H Ð1 Ñ V H  ÐV  Ñ1 Ð[ Ñà 1 œ 1  1 /Ð?ß Ñ Ð?ß Ñ ÐE%Þ"Ñ$ " J " ‡
3 $ 3 3 3ß9 $ 3 3ß$ 3ß# 9 9 93ß9 3ß93 3ß$ !1 1 1 " A "3 ' 7

.

A.5  Estimating  (1 ), and  (2 ) H Ð1 Ñ ) H Ð Ð[ Ñ "s, , 6
3 3, 1

 Estimators of are formed by the obvious substitutions for ~
H Ð1 Ñ H Ð1 Ñ † †3

,
, ,3

, = Ð?ß Ñ .Q Ð?ß Ñß4
3, 

and / H s sÐ?ß Ñ" 1 1 1 in the .  The weights  can be replaced by any consistent estimate,  .  For  -3
J,

3ß9

estimation,  and  are formed by estimating  (22) by the vector of regression~ ~
H Ð Ð[ Ñ Ñ H Ð Ð[ Ñ Ñ Ts s3 3

6 6 ,61 2
1 1

parameters from an ordinary least squares regression of  on the scores .  For , the~ ~
H Ð Ñ W , œ $

,
3 33ß9

6
1

influence function (21) is correct for -estimator where .  For  -estimators with any )  used~
1 1 "s s1 œ ! Ð12 #

in (A3.3), the influence function is

H Ð1 Ð[ ÑÑ ´ H Ð 1 ß 1 œ ! Ñ  IÒH Ð1 1 œ !ÑW IÒW W W Þ ÐE&Ñs3 l
2 2 33 3 $ 3 3 3 3 3

6 $ ‡ $ ‡ 6 6 6
#

w w ",  ,  1 ‘ ‘
ÐE& ÐE&Ñ) is derived by sequential application of RRZ proposition 6.2.  The second term in is

estimated by least squares regression as described above. In the particular instance in which the

estimates of  come from -estimation, ( )  " 1 1 19 3ß 3ß9
#6 6

3s 1 œ T [ Þ2
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A.6  Estimating the asymptotic variance of  and  A 7 "
~ ~  Ð Ñß Ö ×

X
9

X
, A 7Ð Ñ

 Let   be  and H œ ÖH ßH × Ö Ñ×
~ ~ ~ , and  and the variances of   , ,~ ~~ ~+ # $

3 3 3

X
X XX

Z Z Ð Ñ1 +
A 7 " A "9Ð7

respectively.  C =  onsistent estimates of the asymptotic variance are and~ ~ ~
Z 8"

" " "
3 3

X!H H

Z œ 8+
~ ~ ~ ." + +

3 3

X!H H

A.7 Estimating the asymptotic variances of   WÐ l@4Ñ W Ð l@Ñ V.Ð Ñ
~ ~, , .~
7 7 7

=

 Let and  ,  be the vector of  nonparametric and semiparametric estimates of~ ~
WÐ Ñ WÐ Ñ 5 ‚ "7 7 " ‡

WÐ Ñß 2 WÐ à 2Ñ WÐ à 2ß Ñà 2 ^ Z7 7 7 "with row entry   and  here  is a point in the support of . Let ~ ~
3 =#Zs1 and 

be the corresponding  and  5 ‚ 5 WÐ Ñ WÐ Ñ K 5 ‚ 5‡ ‡ ‡ ‡ variance matrices for , .  Define  as the~ ~
7 7 "

diagonal matrix with   in the 'th row 'th column.  Then ~ ~ ~
WÐ2Ñ 2 2 Z œ K=" Z K" " is a consistent estimate

of .   Each  can be represented as a unique  covariate vector, .   Let  exp~
Z 2 : ‚ " D P œ WÐ à 2ß Ñ Ð=" 2 2 7 "

"
~ ~ .  Let  be the  matrix with  row .  ThenX

2 2
‡ w X

2D Ñ ‚ Ö "ß ‚ D × P 5 ‚ Ð:  "Ñ 2 >2 PA 7 "9Ð ß Ñ

Z œ P
~ ~

=2 Z P Z Þ+ =#
w is a consistent estimator of 

 Let  @‡ ‡
3 3,  be the number of levels  in the support of   and  respectively. Arrange ~4 Z N WÐ l@ß 4Ñ7

in groups of length , in order of  increasing index.  Let  be the  matrix of weights ; @ 4 [ " ‚ 4 A M‡ ‡ X ‡
4 4 @‡

the  identity matrix; and   where  denotes the Kronecker product .  Then@ ‚ @ G œ [ Œ M Œ‡ ‡ X
A @4 ‡

W Ð l@Ñ œ G WÐ † Ñ G Z G
~ ~ ,  with variance estimated by, for instance,  .   Estimates of~=

A A =" A
X7 7  

standardized risk differences , , are simple contrasts of the  . For estimators of population~ ~
V.Ð Ñ W Ð l@Ñ7 7 =

attributable risk and their distribution see (Mark 2003 Appendix A).

Appendix B:   -estimators for Case-Cohort and Nested Case-Control  Designs1s

 In this section we provide CCH1s-estimators when sampling follows that defined by either the 

or NCC designs. For simplicity we assume sampling does not depend on   Though both designsE Þ3

specify that  be observed on all cases  the Z3 , -estimators we give require no such restriction.  We1s

assume only that cases are sampled with some known (dependent, or independent, probability).  For

detailed descriptions of sampling procedures see, for instance, Self and Prentice (1988), or Borgan et

al. (1995).

 In the CCH the "comparison" group is a binomial random sampling drawn from all cohort

members.  Since both the case and controls sampling probabilities are dependent only on , any  -? 13 s

estimators with column space greater than (8) can be used.
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 NCC designs use dependent, risk set, sampling.  Let  be the set of ordered case ÖX ß ÞÞÞÞX ×Ð"Ñ Ð.Ñ

failure times.  We estimate the case-sampling probability, ( , by the proportion of cases1 ?3ß9 "Ñ

sampled   For subjects with , we define indicator variables, Þ œ !?3 V œ "35 , if the subject is selected at

X àÐ5Ñ and  = , if  , for some .  LetV " V œ " 2 Ÿ 5à V ´ !35 3!32

1 ?3ß5 35 3 3 35"´ T<ÐV œ "l\ ß œ !ßV œ !Ñ,  then

 (T<ÐV œ "l œ !ß\ Ñ ´ Ñ œ ÐF"Ñ3 3 3 3ß9 !? 1 ?

   ,   ! #
5œ

. 5"

35 3 34Ð5Ñ 35"
4œ"1

1 1MÐ\   X V œ ! Ñ Ð"  Ñ

where the product term is defined to be 1 when   To estimate , we replace the  in5 œ "Þ Ð Ñ1 ? 13 9 ! 35,

ÐF"Ñ Ð\   X ß V œ !Ñ X with the proportion of controls with  who were sampled at .3 35"Ð5Ñ Ð5Ñ

Estimating the influence function  requires obtaining  scores from the likelihood based on .1 ?3 9, Ð Ñ
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Table 1.  Effect of H. Pylori infection on age-specific survival and age-standardized 
survival, at 5.25 years in the Linxian cohort 

 
 
 

 
 

H. Pylori- (V0) 
 

 
 
 

H. Pylori+ (V1) 
 

     
Young (J0)  99.2 (98.9, 99.5)  98.8 (98.4, 99.0)

Old (J1)  97.3 (96.1, 98.1)  95.5 (94.4, 96.3)
     

Age Standardized 
Survival 

 98.3 (97.7, 98.9)  97.2 (96.7, 97.8)

Age Standardized Risk 
Difference 

  1.08 (0.02, 2.15)  

 
The estimates are based on CPH model (1) with relative risks exp(βo1Vi +  βo2Ji) 

 
 
 
 
 

Table 2:  Relative efficiencies of the ˆ( )π ∆  and ˆ( , )Jπ ∆  semiparametric estimators of 
( | )S vτ  when J is an auxillary covariate 

 
 Relative Efficiency equals 100 times the ratio of the variance of an estimator to the varaince 
of the STP estimator. Marginal covariate probabilities are P(V1)=0.65 and P(J1)=0.5.  

 Relative Efficiency 
2 0VRR .=  

Relative Efficiency 
0 5VRR .=  

 0 90( | ) %S vτ =  1 81( | ) %S vτ =  
 

 

 0 90( | ) %S vτ =
 

1 95( | ) %S vτ =  

P(V1|J1) ˆ( )π ∆  ˆ( , )Jπ ∆  ˆ( )π ∆ ˆ( , )Jπ ∆  
 ˆ( )π ∆ ˆ( , )Jπ ∆  ˆ( )π ∆  ˆ( , )Jπ ∆  

.65 82 82 46 46 68 68 62 63 

.75 81 79 47 46 67 64 62 61 

.85 81 73 47 43 66 58 64 57 

.95 80 62 47 40 64 48 65 49 
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Table 3: 
 Relative Efficiency of RC-Efficient, Locally Efficient and π̂ -Estimators 

of ( | )sS vτ  for Semiparametric and Nonparametric Models 
 
 

  
Relative Efficiency 

 Estimator 0 90 4( | ) .sS vτ =
 

1 82 0( | ) .sS vτ =
 

effS  86 41 Semiparametric 

ˆ( , )Jπ ∆  87 45 
    
    

Nonparametric SLE correct 90 42 
 ILE correct 90 42 
 SLE prior 108 47 
 ILE prior 90 42 
 SLE null 91 43 
 ILE null 90 42 
 ˆ( , )Jπ ∆  90 47 

 
Relative Efficiency equals 100 times the ratio of the variance of the estimator 
to the variance of the STP estimator. Marginal covariate probabilities are 
 P(V=1)=0.65 and P(J=1)=0.5, with P(V=1|J=1)=0.85 and P(V=1|J=0)=0.45 
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Figure 1.  Relative Efficiency of Semiparametric Estimators of 1( | )sS vτ  as Case-sampling 
Percentage Varies.   
               

Legend 
 ( )ˆ , -estimatorJπ ∆  
 -estimatoreffS  

 
The simulation data were generated using the same CPH model as in Table 3. Sampling percent 
is the binomial sampling probability (x 100) of V measurement.  For all simulations control 
sampling is 15%.  Case-sampling percent is indicated on the x-axis.  Relative efficiency is 
defined as 100 times the ratio of the variance of ( )ˆ , Jπ ∆  (dotted line) and RC-efficient (solid 
line) estimators, to the variance of the STP estimator.  Both estimators are substantially more 
efficient than the STP estimator.  The magnitude of the efficiency gains are inversely related to 
case-sampling percent.  Efficiency differences between the effS  and ( )ˆ , Jπ ∆  estimators show a 
similar dependency on case-sampling percent.  
 
 
 
 
 
 
Figure 2.  Comparing the Effect of Case-Sampling Percent on the Variance of STP and 

effS  estimators of 1( | )sS vτ . 
 

Legend 
 ( ) ( )Var STP /  Var STP at 90% case-sampling  
 ( ) ( )Var /  Var at 90% case-samplingeff effS S  

 ( ) ( )Var /  Var STP at 90% case-samplingeffS  

 
The simulation data were generated using the same CPH model as in Table 3.  Sampling percent 
is the binomial sampling probability (x 100) of V measurement.  For all simulations control 
sampling is 15%.  Case-sampling percent is indicated on the x-axis. The solid line is the ratio of 
the variance of the estimator-effS at each of four case-sampling percents, to the variance of the 
STP estimator at 90% case sampling.  Except at the lowest case-sampling percent, 12.5%, the 
ratio is less than one.  The dotted line compares the variance of the estimator-effS  at each case-
sampling percent, to the variance of the estimator-effS at 90% case-sampling. The dashed line 
plots the corresponding ratios for the STP estimator.  The variances of both estimators increase 
as case-sampling fractions decrease. The rate of increase is greater for the STP estimator. 
 



  - 30 -
Figure 1. 

10 20 30 40 50 60 70 80 90
30

35

40

45

50

55

60

65

Case-Sampling Percent

R
el

at
iv

e 
Ef

fic
ie

nc
y 

 
 
Figure 2. 

10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

Case-Sampling Percent

Va
ria

nc
e 

R
at

io

 


